//---------------------------------------------------------------------------------------------------
// Header files
#include <SPI.h>
#include <Wire.h>
#include <math.h>
#include <BLEDevice.h>
#include <BLEServer.h>
#include <BLEUtils.h>
#include <BLE2902.h>
#include <QMC5883LCompass.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
//---------------------------------------------------------------------------------------------------
// Definitions
QMC5883LCompass compass;
#define SCREEN_WIDTH 128 // OLED display width, in pixels
#define SCREEN_HEIGHT 64 // OLED display height, in pixels
#define OLED_RESET -1
Adafruit_SSD1306 display = Adafruit_SSD1306(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire);
int status;
int calibrationData[3][2];
bool changed = false;
bool done = false;
int t = 0;
int c = 0;
bool calibrated = false;
void testdrawchar(void) {
display.clearDisplay();
display.setTextSize(1); // Normal 1:1 pixel scale
display.setTextColor(SSD1306_WHITE); // Draw white text
display.setCursor(0, 0); // Start at top-left corner
display.cp437(true); // Use full 256 char 'Code Page 437' font
// Not all the characters will fit on the display. This is normal.
// Library will draw what it can and the rest will be clipped.
for(int16_t i=0; i<256; i++) {
if(i == '\n') display.write(' ');
else display.write(i);
}
display.display();
delay(2000);
}
// Definitions MPU6050.h
#define MPU6050_ADDRESS_AD0_LOW 0x68 // address pin low (GND), default for InvenSense evaluation board
#define MPU6050_ADDRESS_AD0_HIGH 0x69 // address pin high (VCC)
#define MPU6050_DEFAULT_ADDRESS MPU6050_ADDRESS_AD0_LOW
#define MPU6050_RA_XG_OFFS_TC 0x00 //[7] PWR_MODE, [6:1] XG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_YG_OFFS_TC 0x01 //[7] PWR_MODE, [6:1] YG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_ZG_OFFS_TC 0x02 //[7] PWR_MODE, [6:1] ZG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_X_FINE_GAIN 0x03 //[7:0] X_FINE_GAIN
#define MPU6050_RA_Y_FINE_GAIN 0x04 //[7:0] Y_FINE_GAIN
#define MPU6050_RA_Z_FINE_GAIN 0x05 //[7:0] Z_FINE_GAIN
#define MPU6050_RA_XA_OFFS_H 0x06 //[15:0] XA_OFFS
#define MPU6050_RA_XA_OFFS_L_TC 0x07
#define MPU6050_RA_YA_OFFS_H 0x08 //[15:0] YA_OFFS
#define MPU6050_RA_YA_OFFS_L_TC 0x09
#define MPU6050_RA_ZA_OFFS_H 0x0A //[15:0] ZA_OFFS
#define MPU6050_RA_ZA_OFFS_L_TC 0x0B
#define MPU6050_RA_SELF_TEST_X 0x0D //[7:5] XA_TEST[4-2], [4:0] XG_TEST[4-0]
#define MPU6050_RA_SELF_TEST_Y 0x0E //[7:5] YA_TEST[4-2], [4:0] YG_TEST[4-0]
#define MPU6050_RA_SELF_TEST_Z 0x0F //[7:5] ZA_TEST[4-2], [4:0] ZG_TEST[4-0]
#define MPU6050_RA_SELF_TEST_A 0x10 //[5:4] XA_TEST[1-0], [3:2] YA_TEST[1-0], [1:0] ZA_TEST[1-0]
#define MPU6050_RA_XG_OFFS_USRH 0x13 //[15:0] XG_OFFS_USR
#define MPU6050_RA_XG_OFFS_USRL 0x14
#define MPU6050_RA_YG_OFFS_USRH 0x15 //[15:0] YG_OFFS_USR
#define MPU6050_RA_YG_OFFS_USRL 0x16
#define MPU6050_RA_ZG_OFFS_USRH 0x17 //[15:0] ZG_OFFS_USR
#define MPU6050_RA_ZG_OFFS_USRL 0x18
#define MPU6050_RA_SMPLRT_DIV 0x19
#define MPU6050_RA_CONFIG 0x1A
#define MPU6050_RA_GYRO_CONFIG 0x1B
#define MPU6050_RA_ACCEL_CONFIG 0x1C
#define MPU6050_RA_FF_THR 0x1D
#define MPU6050_RA_FF_DUR 0x1E
#define MPU6050_RA_MOT_THR 0x1F
#define MPU6050_RA_MOT_DUR 0x20
#define MPU6050_RA_ZRMOT_THR 0x21
#define MPU6050_RA_ZRMOT_DUR 0x22
#define MPU6050_RA_FIFO_EN 0x23
#define MPU6050_RA_I2C_MST_CTRL 0x24
#define MPU6050_RA_I2C_SLV0_ADDR 0x25
#define MPU6050_RA_I2C_SLV0_REG 0x26
#define MPU6050_RA_I2C_SLV0_CTRL 0x27
#define MPU6050_RA_I2C_SLV1_ADDR 0x28
#define MPU6050_RA_I2C_SLV1_REG 0x29
#define MPU6050_RA_I2C_SLV1_CTRL 0x2A
#define MPU6050_RA_I2C_SLV2_ADDR 0x2B
#define MPU6050_RA_I2C_SLV2_REG 0x2C
#define MPU6050_RA_I2C_SLV2_CTRL 0x2D
#define MPU6050_RA_I2C_SLV3_ADDR 0x2E
#define MPU6050_RA_I2C_SLV3_REG 0x2F
#define MPU6050_RA_I2C_SLV3_CTRL 0x30
#define MPU6050_RA_I2C_SLV4_ADDR 0x31
#define MPU6050_RA_I2C_SLV4_REG 0x32
#define MPU6050_RA_I2C_SLV4_DO 0x33
#define MPU6050_RA_I2C_SLV4_CTRL 0x34
#define MPU6050_RA_I2C_SLV4_DI 0x35
#define MPU6050_RA_I2C_MST_STATUS 0x36
#define MPU6050_RA_INT_PIN_CFG 0x37
#define MPU6050_RA_INT_ENABLE 0x38
#define MPU6050_RA_DMP_INT_STATUS 0x39
#define MPU6050_RA_INT_STATUS 0x3A
#define MPU6050_RA_ACCEL_XOUT_H 0x3B
#define MPU6050_RA_ACCEL_XOUT_L 0x3C
#define MPU6050_RA_ACCEL_YOUT_H 0x3D
#define MPU6050_RA_ACCEL_YOUT_L 0x3E
#define MPU6050_RA_ACCEL_ZOUT_H 0x3F
#define MPU6050_RA_ACCEL_ZOUT_L 0x40
#define MPU6050_RA_TEMP_OUT_H 0x41
#define MPU6050_RA_TEMP_OUT_L 0x42
#define MPU6050_RA_GYRO_XOUT_H 0x43
#define MPU6050_RA_GYRO_XOUT_L 0x44
#define MPU6050_RA_GYRO_YOUT_H 0x45
#define MPU6050_RA_GYRO_YOUT_L 0x46
#define MPU6050_RA_GYRO_ZOUT_H 0x47
#define MPU6050_RA_GYRO_ZOUT_L 0x48
#define MPU6050_RA_EXT_SENS_DATA_00 0x49
#define MPU6050_RA_EXT_SENS_DATA_01 0x4A
#define MPU6050_RA_EXT_SENS_DATA_02 0x4B
#define MPU6050_RA_EXT_SENS_DATA_03 0x4C
#define MPU6050_RA_EXT_SENS_DATA_04 0x4D
#define MPU6050_RA_EXT_SENS_DATA_05 0x4E
#define MPU6050_RA_EXT_SENS_DATA_06 0x4F
#define MPU6050_RA_EXT_SENS_DATA_07 0x50
#define MPU6050_RA_EXT_SENS_DATA_08 0x51
#define MPU6050_RA_EXT_SENS_DATA_09 0x52
#define MPU6050_RA_EXT_SENS_DATA_10 0x53
#define MPU6050_RA_EXT_SENS_DATA_11 0x54
#define MPU6050_RA_EXT_SENS_DATA_12 0x55
#define MPU6050_RA_EXT_SENS_DATA_13 0x56
#define MPU6050_RA_EXT_SENS_DATA_14 0x57
#define MPU6050_RA_EXT_SENS_DATA_15 0x58
#define MPU6050_RA_EXT_SENS_DATA_16 0x59
#define MPU6050_RA_EXT_SENS_DATA_17 0x5A
#define MPU6050_RA_EXT_SENS_DATA_18 0x5B
#define MPU6050_RA_EXT_SENS_DATA_19 0x5C
#define MPU6050_RA_EXT_SENS_DATA_20 0x5D
#define MPU6050_RA_EXT_SENS_DATA_21 0x5E
#define MPU6050_RA_EXT_SENS_DATA_22 0x5F
#define MPU6050_RA_EXT_SENS_DATA_23 0x60
#define MPU6050_RA_MOT_DETECT_STATUS 0x61
#define MPU6050_RA_I2C_SLV0_DO 0x63
#define MPU6050_RA_I2C_SLV1_DO 0x64
#define MPU6050_RA_I2C_SLV2_DO 0x65
#define MPU6050_RA_I2C_SLV3_DO 0x66
#define MPU6050_RA_I2C_MST_DELAY_CTRL 0x67
#define MPU6050_RA_SIGNAL_PATH_RESET 0x68
#define MPU6050_RA_MOT_DETECT_CTRL 0x69
#define MPU6050_RA_USER_CTRL 0x6A
#define MPU6050_RA_PWR_MGMT_1 0x6B
#define MPU6050_RA_PWR_MGMT_2 0x6C
#define MPU6050_RA_BANK_SEL 0x6D
#define MPU6050_RA_MEM_START_ADDR 0x6E
#define MPU6050_RA_MEM_R_W 0x6F
#define MPU6050_RA_DMP_CFG_1 0x70
#define MPU6050_RA_DMP_CFG_2 0x71
#define MPU6050_RA_FIFO_COUNTH 0x72
#define MPU6050_RA_FIFO_COUNTL 0x73
#define MPU6050_RA_FIFO_R_W 0x74
#define MPU6050_RA_WHO_AM_I 0x75
#define MPU6050_SELF_TEST_XA_1_BIT 0x07
#define MPU6050_SELF_TEST_XA_1_LENGTH 0x03
#define MPU6050_SELF_TEST_XA_2_BIT 0x05
#define MPU6050_SELF_TEST_XA_2_LENGTH 0x02
#define MPU6050_SELF_TEST_YA_1_BIT 0x07
#define MPU6050_SELF_TEST_YA_1_LENGTH 0x03
#define MPU6050_SELF_TEST_YA_2_BIT 0x03
#define MPU6050_SELF_TEST_YA_2_LENGTH 0x02
#define MPU6050_SELF_TEST_ZA_1_BIT 0x07
#define MPU6050_SELF_TEST_ZA_1_LENGTH 0x03
#define MPU6050_SELF_TEST_ZA_2_BIT 0x01
#define MPU6050_SELF_TEST_ZA_2_LENGTH 0x02
#define MPU6050_SELF_TEST_XG_1_BIT 0x04
#define MPU6050_SELF_TEST_XG_1_LENGTH 0x05
#define MPU6050_SELF_TEST_YG_1_BIT 0x04
#define MPU6050_SELF_TEST_YG_1_LENGTH 0x05
#define MPU6050_SELF_TEST_ZG_1_BIT 0x04
#define MPU6050_SELF_TEST_ZG_1_LENGTH 0x05
#define MPU6050_TC_PWR_MODE_BIT 7
#define MPU6050_TC_OFFSET_BIT 6
#define MPU6050_TC_OFFSET_LENGTH 6
#define MPU6050_TC_OTP_BNK_VLD_BIT 0
#define MPU6050_VDDIO_LEVEL_VLOGIC 0
#define MPU6050_VDDIO_LEVEL_VDD 1
#define MPU6050_CFG_EXT_SYNC_SET_BIT 5
#define MPU6050_CFG_EXT_SYNC_SET_LENGTH 3
#define MPU6050_CFG_DLPF_CFG_BIT 2
#define MPU6050_CFG_DLPF_CFG_LENGTH 3
#define MPU6050_EXT_SYNC_DISABLED 0x0
#define MPU6050_EXT_SYNC_TEMP_OUT_L 0x1
#define MPU6050_EXT_SYNC_GYRO_XOUT_L 0x2
#define MPU6050_EXT_SYNC_GYRO_YOUT_L 0x3
#define MPU6050_EXT_SYNC_GYRO_ZOUT_L 0x4
#define MPU6050_EXT_SYNC_ACCEL_XOUT_L 0x5
#define MPU6050_EXT_SYNC_ACCEL_YOUT_L 0x6
#define MPU6050_EXT_SYNC_ACCEL_ZOUT_L 0x7
#define MPU6050_DLPF_BW_256 0x00
#define MPU6050_DLPF_BW_188 0x01
#define MPU6050_DLPF_BW_98 0x02
#define MPU6050_DLPF_BW_42 0x03
#define MPU6050_DLPF_BW_20 0x04
#define MPU6050_DLPF_BW_10 0x05
#define MPU6050_DLPF_BW_5 0x06
#define MPU6050_GCONFIG_FS_SEL_BIT 4
#define MPU6050_GCONFIG_FS_SEL_LENGTH 2
#define MPU6050_GYRO_FS_250 0x00
#define MPU6050_GYRO_FS_500 0x01
#define MPU6050_GYRO_FS_1000 0x02
#define MPU6050_GYRO_FS_2000 0x03
#define MPU6050_ACONFIG_XA_ST_BIT 7
#define MPU6050_ACONFIG_YA_ST_BIT 6
#define MPU6050_ACONFIG_ZA_ST_BIT 5
#define MPU6050_ACONFIG_AFS_SEL_BIT 4
#define MPU6050_ACONFIG_AFS_SEL_LENGTH 2
#define MPU6050_ACONFIG_ACCEL_HPF_BIT 2
#define MPU6050_ACONFIG_ACCEL_HPF_LENGTH 3
#define MPU6050_ACCEL_FS_2 0x00
#define MPU6050_ACCEL_FS_4 0x01
#define MPU6050_ACCEL_FS_8 0x02
#define MPU6050_ACCEL_FS_16 0x03
#define MPU6050_DHPF_RESET 0x00
#define MPU6050_DHPF_5 0x01
#define MPU6050_DHPF_2P5 0x02
#define MPU6050_DHPF_1P25 0x03
#define MPU6050_DHPF_0P63 0x04
#define MPU6050_DHPF_HOLD 0x07
#define MPU6050_TEMP_FIFO_EN_BIT 7
#define MPU6050_XG_FIFO_EN_BIT 6
#define MPU6050_YG_FIFO_EN_BIT 5
#define MPU6050_ZG_FIFO_EN_BIT 4
#define MPU6050_ACCEL_FIFO_EN_BIT 3
#define MPU6050_SLV2_FIFO_EN_BIT 2
#define MPU6050_SLV1_FIFO_EN_BIT 1
#define MPU6050_SLV0_FIFO_EN_BIT 0
#define MPU6050_MULT_MST_EN_BIT 7
#define MPU6050_WAIT_FOR_ES_BIT 6
#define MPU6050_SLV_3_FIFO_EN_BIT 5
#define MPU6050_I2C_MST_P_NSR_BIT 4
#define MPU6050_I2C_MST_CLK_BIT 3
#define MPU6050_I2C_MST_CLK_LENGTH 4
#define MPU6050_CLOCK_DIV_348 0x0
#define MPU6050_CLOCK_DIV_333 0x1
#define MPU6050_CLOCK_DIV_320 0x2
#define MPU6050_CLOCK_DIV_308 0x3
#define MPU6050_CLOCK_DIV_296 0x4
#define MPU6050_CLOCK_DIV_286 0x5
#define MPU6050_CLOCK_DIV_276 0x6
#define MPU6050_CLOCK_DIV_267 0x7
#define MPU6050_CLOCK_DIV_258 0x8
#define MPU6050_CLOCK_DIV_500 0x9
#define MPU6050_CLOCK_DIV_471 0xA
#define MPU6050_CLOCK_DIV_444 0xB
#define MPU6050_CLOCK_DIV_421 0xC
#define MPU6050_CLOCK_DIV_400 0xD
#define MPU6050_CLOCK_DIV_381 0xE
#define MPU6050_CLOCK_DIV_364 0xF
#define MPU6050_I2C_SLV_RW_BIT 7
#define MPU6050_I2C_SLV_ADDR_BIT 6
#define MPU6050_I2C_SLV_ADDR_LENGTH 7
#define MPU6050_I2C_SLV_EN_BIT 7
#define MPU6050_I2C_SLV_BYTE_SW_BIT 6
#define MPU6050_I2C_SLV_REG_DIS_BIT 5
#define MPU6050_I2C_SLV_GRP_BIT 4
#define MPU6050_I2C_SLV_LEN_BIT 3
#define MPU6050_I2C_SLV_LEN_LENGTH 4
#define MPU6050_I2C_SLV4_RW_BIT 7
#define MPU6050_I2C_SLV4_ADDR_BIT 6
#define MPU6050_I2C_SLV4_ADDR_LENGTH 7
#define MPU6050_I2C_SLV4_EN_BIT 7
#define MPU6050_I2C_SLV4_INT_EN_BIT 6
#define MPU6050_I2C_SLV4_REG_DIS_BIT 5
#define MPU6050_I2C_SLV4_MST_DLY_BIT 4
#define MPU6050_I2C_SLV4_MST_DLY_LENGTH 5
#define MPU6050_MST_PASS_THROUGH_BIT 7
#define MPU6050_MST_I2C_SLV4_DONE_BIT 6
#define MPU6050_MST_I2C_LOST_ARB_BIT 5
#define MPU6050_MST_I2C_SLV4_NACK_BIT 4
#define MPU6050_MST_I2C_SLV3_NACK_BIT 3
#define MPU6050_MST_I2C_SLV2_NACK_BIT 2
#define MPU6050_MST_I2C_SLV1_NACK_BIT 1
#define MPU6050_MST_I2C_SLV0_NACK_BIT 0
#define MPU6050_INTCFG_INT_LEVEL_BIT 7
#define MPU6050_INTCFG_INT_OPEN_BIT 6
#define MPU6050_INTCFG_LATCH_INT_EN_BIT 5
#define MPU6050_INTCFG_INT_RD_CLEAR_BIT 4
#define MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT 3
#define MPU6050_INTCFG_FSYNC_INT_EN_BIT 2
#define MPU6050_INTCFG_I2C_BYPASS_EN_BIT 1
#define MPU6050_INTCFG_CLKOUT_EN_BIT 0
#define MPU6050_INTMODE_ACTIVEHIGH 0x00
#define MPU6050_INTMODE_ACTIVELOW 0x01
#define MPU6050_INTDRV_PUSHPULL 0x00
#define MPU6050_INTDRV_OPENDRAIN 0x01
#define MPU6050_INTLATCH_50USPULSE 0x00
#define MPU6050_INTLATCH_WAITCLEAR 0x01
#define MPU6050_INTCLEAR_STATUSREAD 0x00
#define MPU6050_INTCLEAR_ANYREAD 0x01
#define MPU6050_INTERRUPT_FF_BIT 7
#define MPU6050_INTERRUPT_MOT_BIT 6
#define MPU6050_INTERRUPT_ZMOT_BIT 5
#define MPU6050_INTERRUPT_FIFO_OFLOW_BIT 4
#define MPU6050_INTERRUPT_I2C_MST_INT_BIT 3
#define MPU6050_INTERRUPT_PLL_RDY_INT_BIT 2
#define MPU6050_INTERRUPT_DMP_INT_BIT 1
#define MPU6050_INTERRUPT_DATA_RDY_BIT 0
// TODO: figure out what these actually do
// UMPL source code is not very obivous
#define MPU6050_DMPINT_5_BIT 5
#define MPU6050_DMPINT_4_BIT 4
#define MPU6050_DMPINT_3_BIT 3
#define MPU6050_DMPINT_2_BIT 2
#define MPU6050_DMPINT_1_BIT 1
#define MPU6050_DMPINT_0_BIT 0
#define MPU6050_MOTION_MOT_XNEG_BIT 7
#define MPU6050_MOTION_MOT_XPOS_BIT 6
#define MPU6050_MOTION_MOT_YNEG_BIT 5
#define MPU6050_MOTION_MOT_YPOS_BIT 4
#define MPU6050_MOTION_MOT_ZNEG_BIT 3
#define MPU6050_MOTION_MOT_ZPOS_BIT 2
#define MPU6050_MOTION_MOT_ZRMOT_BIT 0
#define MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT 7
#define MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT 4
#define MPU6050_DELAYCTRL_I2C_SLV3_DLY_EN_BIT 3
#define MPU6050_DELAYCTRL_I2C_SLV2_DLY_EN_BIT 2
#define MPU6050_DELAYCTRL_I2C_SLV1_DLY_EN_BIT 1
#define MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT 0
#define MPU6050_PATHRESET_GYRO_RESET_BIT 2
#define MPU6050_PATHRESET_ACCEL_RESET_BIT 1
#define MPU6050_PATHRESET_TEMP_RESET_BIT 0
#define MPU6050_DETECT_ACCEL_ON_DELAY_BIT 5
#define MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH 2
#define MPU6050_DETECT_FF_COUNT_BIT 3
#define MPU6050_DETECT_FF_COUNT_LENGTH 2
#define MPU6050_DETECT_MOT_COUNT_BIT 1
#define MPU6050_DETECT_MOT_COUNT_LENGTH 2
#define MPU6050_DETECT_DECREMENT_RESET 0x0
#define MPU6050_DETECT_DECREMENT_1 0x1
#define MPU6050_DETECT_DECREMENT_2 0x2
#define MPU6050_DETECT_DECREMENT_4 0x3
#define MPU6050_USERCTRL_DMP_EN_BIT 7
#define MPU6050_USERCTRL_FIFO_EN_BIT 6
#define MPU6050_USERCTRL_I2C_MST_EN_BIT 5
#define MPU6050_USERCTRL_I2C_IF_DIS_BIT 4
#define MPU6050_USERCTRL_DMP_RESET_BIT 3
#define MPU6050_USERCTRL_FIFO_RESET_BIT 2
#define MPU6050_USERCTRL_I2C_MST_RESET_BIT 1
#define MPU6050_USERCTRL_SIG_COND_RESET_BIT 0
#define MPU6050_PWR1_DEVICE_RESET_BIT 7
#define MPU6050_PWR1_SLEEP_BIT 6
#define MPU6050_PWR1_CYCLE_BIT 5
#define MPU6050_PWR1_TEMP_DIS_BIT 3
#define MPU6050_PWR1_CLKSEL_BIT 2
#define MPU6050_PWR1_CLKSEL_LENGTH 3
#define MPU6050_CLOCK_INTERNAL 0x00
#define MPU6050_CLOCK_PLL_XGYRO 0x01
#define MPU6050_CLOCK_PLL_YGYRO 0x02
#define MPU6050_CLOCK_PLL_ZGYRO 0x03
#define MPU6050_CLOCK_PLL_EXT32K 0x04
#define MPU6050_CLOCK_PLL_EXT19M 0x05
#define MPU6050_CLOCK_KEEP_RESET 0x07
#define MPU6050_PWR2_LP_WAKE_CTRL_BIT 7
#define MPU6050_PWR2_LP_WAKE_CTRL_LENGTH 2
#define MPU6050_PWR2_STBY_XA_BIT 5
#define MPU6050_PWR2_STBY_YA_BIT 4
#define MPU6050_PWR2_STBY_ZA_BIT 3
#define MPU6050_PWR2_STBY_XG_BIT 2
#define MPU6050_PWR2_STBY_YG_BIT 1
#define MPU6050_PWR2_STBY_ZG_BIT 0
#define MPU6050_WAKE_FREQ_1P25 0x0
#define MPU6050_WAKE_FREQ_2P5 0x1
#define MPU6050_WAKE_FREQ_5 0x2
#define MPU6050_WAKE_FREQ_10 0x3
#define MPU6050_BANKSEL_PRFTCH_EN_BIT 6
#define MPU6050_BANKSEL_CFG_USER_BANK_BIT 5
#define MPU6050_BANKSEL_MEM_SEL_BIT 4
#define MPU6050_BANKSEL_MEM_SEL_LENGTH 5
#define MPU6050_WHO_AM_I_BIT 6
#define MPU6050_WHO_AM_I_LENGTH 6
#define MPU6050_DMP_MEMORY_BANKS 8
#define MPU6050_DMP_MEMORY_BANK_SIZE 256
#define MPU6050_DMP_MEMORY_CHUNK_SIZE 16
// For Quaternion function
#define twoKpDef (2.0f * 0.5f) // 2 * proportional gain
#define twoKiDef (2.0f * 0.0f) // 2 * integral gain
// Transform raw data of accelerometer & gyroscope
#define MPU6050_AXOFFSET -208
#define MPU6050_AYOFFSET 417
#define MPU6050_AZOFFSET 93
//#define MPU6050_AXOFFSET 0
//#define MPU6050_AYOFFSET 0
//#define MPU6050_AZOFFSET 0
//#define MPU6050_AXGAIN 16384.0 // AFS_SEL = 0, +/-2g, MPU6050_ACCEL_FS_2
//#define MPU6050_AYGAIN 16384.0 // AFS_SEL = 0, +/-2g, MPU6050_ACCEL_FS_2
//#define MPU6050_AZGAIN 16384.0 // AFS_SEL = 0, +/-2g, MPU6050_ACCEL_FS_2
//#define MPU6050_AXGAIN 8192.0 // AFS_SEL = 1, +/-4g, MPU6050_ACCEL_FS_4
//#define MPU6050_AYGAIN 8192.0 // AFS_SEL = 1, +/-4g, MPU6050_ACCEL_FS_4
//#define MPU6050_AZGAIN 8192.0 // AFS_SEL = 1, +/-4g, MPU6050_ACCEL_FS_4
#define MPU6050_AXGAIN 4096.0 // AFS_SEL = 2, +/-8g, MPU6050_ACCEL_FS_8
#define MPU6050_AYGAIN 4096.0 // AFS_SEL = 2, +/-8g, MPU6050_ACCEL_FS_8
#define MPU6050_AZGAIN 4096.0 // AFS_SEL = 2, +/-8g, MPU6050_ACCEL_FS_8
//#define MPU6050_AXGAIN 2048.0 // AFS_SEL = 3, +/-16g, MPU6050_ACCEL_FS_16
//#define MPU6050_AYGAIN 2048.0 // AFS_SEL = 3, +/-16g, MPU6050_ACCEL_FS_16
//#define MPU6050_AZGAIN 2048.0 // AFS_SEL = 3, +/-16g, MPU6050_ACCEL_FS_16
#define MPU6050_GXOFFSET 0
#define MPU6050_GYOFFSET 2
#define MPU6050_GZOFFSET 3
//#define MPU6050_GXOFFSET 0
//#define MPU6050_GYOFFSET 0
//#define MPU6050_GZOFFSET 0
//#define MPU6050_GXGAIN 131.072 // FS_SEL = 0, +/-250degree/s, MPU6050_GYRO_FS_250
//#define MPU6050_GYGAIN 131.072 // FS_SEL = 0, +/-250degree/s, MPU6050_GYRO_FS_250
//#define MPU6050_GZGAIN 131.072 // FS_SEL = 0, +/-250degree/s, MPU6050_GYRO_FS_250
//#define MPU6050_GXGAIN 65.536 // FS_SEL = 1, +/-500degree/s, MPU6050_GYRO_FS_500
//#define MPU6050_GYGAIN 65.536 // FS_SEL = 1, +/-500degree/s, MPU6050_GYRO_FS_500
//#define MPU6050_GZGAIN 65.536 // FS_SEL = 1, +/-500degree/s, MPU6050_GYRO_FS_500
//#define MPU6050_GXGAIN 32.768 // FS_SEL = 2, +/-1000degree/s, MPU6050_GYRO_FS_1000
//#define MPU6050_GYGAIN 32.768 // FS_SEL = 2, +/-1000degree/s, MPU6050_GYRO_FS_1000
//#define MPU6050_GZGAIN 32.768 // FS_SEL = 2, +/-1000degree/s, MPU6050_GYRO_FS_1000
#define MPU6050_GXGAIN 16.384 // FS_SEL = 3, +/-2000degree/s, MPU6050_GYRO_FS_2000
#define MPU6050_GYGAIN 16.384 // FS_SEL = 3, +/-2000degree/s, MPU6050_GYRO_FS_2000
#define MPU6050_GZGAIN 16.384 // FS_SEL = 3, +/-2000degree/s, MPU6050_GYRO_FS_2000
// Blinking LED
#define SDA D4
#define SCL D5
#define INTERRUPT_PIN D1
#define SERVICE_UUID "0000FFE0-0000-1000-8000-00805F9B34FB"
#define CHARACTERISTIC_UUID "0000FFE1-0000-1000-8000-00805F9B34FB"
//---------------------------------------------------------------------------------------------------
// Variable definitions
RTC_DATA_ATTR int bootCount = 0;
int power_flag = 0;
int button_state = 0;
int button_cnt = 0;
const int readPin = D1;
float BAT_Value = 0;
hw_timer_t *My_timer = NULL;
volatile float twoKp = twoKpDef; // 2 * proportional gain (Kp)
volatile float twoKi = twoKiDef; // 2 * integral gain (Ki)
volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f, q4 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
volatile float integralFBx = 0.0f, integralFBy = 0.0f, integralFBz = 0.0f; // integral error terms scaled by Ki
long sampling_timer;
int16_t AcX, AcY, AcZ, Tmp, GyX, GyY, GyZ;
float axg, ayg, azg, gxrs, gyrs, gzrs;
float roll, pitch, yaw;
float SelfTest[6];
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
float sampleFreq = 0.0f; // integration interval for both filter schemes
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval
uint32_t Now = 0; // used to calculate integration interval
bool blinkState = false; // LED Bliking for Pin13
BLEServer* pServer = NULL;
BLECharacteristic* pCharacteristic = NULL;
bool deviceConnected = false;
bool oldDeviceConnected = false;
unsigned int buff_size = 256;
uint8_t values[256];
class MyServerCallbacks: public BLEServerCallbacks {
void onConnect(BLEServer* pServer) {
deviceConnected = true;
BLEDevice::startAdvertising();
};
void onDisconnect(BLEServer* pServer) {
deviceConnected = false;
}
};
void IRAM_ATTR onTimer(){
}
void setup() {
Serial.begin(115200);
// 타이머 설정
My_timer = timerBegin(0, 80, true);
timerAttachInterrupt(My_timer, &onTimer, true);
timerAlarmWrite(My_timer, 100000, true);
timerAlarmEnable(My_timer); //Just Enable
pinMode(INTERRUPT_PIN, INPUT);
Serial.println("Hello, ESP32-C3!");
// SSD1306_SWITCHCAPVCC = generate display voltage from 3.3V internally
if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Address 0x3D for 128x64
Serial.println(F("SSD1306 allocation failed"));
for(;;); // Don't proceed, loop forever
}
pinMode(D1, INPUT);
pinMode(D2, INPUT);
pinMode(A0, INPUT); // ADC
//Wire.begin(SDA, SCL, 400000);
Wire.begin();
compass.init();
// Self Test
MPU6050SelfTest(SelfTest);
// Calibrate MPU6050
//calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
// Initialize MPU6050
MPU6050_Init();
// Sampling Timer
sampling_timer = micros();
ble_init();
Serial.println("display initialized");
display.setTextSize(1); // Normal 1:1 pixel scale
display.setTextColor(SSD1306_WHITE); // Draw white text
display.setCursor(0, 0); // Start at top-left corner
display.cp437(true); // Use full 256 char 'Code Page 437' font
display.display();
delay(200); // Pause for 2 seconds
// Clear the buffer
display.clearDisplay();
//testdrawchar();
}
void loop() {
uint8_t sw1 = digitalRead(D1);
uint8_t sw2 = digitalRead(D2);
uint32_t Vbatt = 0;
char buf[buff_size] = "";
display.clearDisplay();
for(int i = 0; i < 16; i++) {
Vbatt = Vbatt + analogReadMilliVolts(A0); // ADC with correction
}
float Vbattf = 2 * Vbatt / 16 / 1000.0; // attenuation ratio 1/2, mV --> V
display.setCursor(0, 0);
display.print("Vbatt : ");
display.println(Vbattf, 3);
display.setCursor(0, 31);
display.print("SW1 : ");
display.println(sw1);
display.setCursor(0, 16);
display.print("SW2 : ");
display.println(sw2);
// Read accelerometer and gyroscope data
// Get raw data
mpu6050_GetData();
// Update raw data to Quaternion form
mpu6050_updateQuaternion();
mpu6050_getRollPitchYaw();
Now = micros();
sampleFreq = (1000000.0f / (Now - lastUpdate)); // set integration time by time elapsed since last filter update
lastUpdate = Now;
//compute data
MahonyAHRSupdateIMU(gxrs, gyrs, gzrs, axg, ayg, azg);
/* String temp = String(q0, 6);
temp += ",";
temp += String(q1, 6);
temp += ",";
temp += String(q2, 6);
temp += ",";
temp += String(q3, 6);
Serial.println(temp);*/
// If calibrating
float x, y, z;
// Read compass values
compass.read();
// Return XYZ readings
x = compass.getX();
y = compass.getY();
z = compass.getZ();
int azimut = compass.getAzimuth();
float bearing = compass.getBearing(azimut);
String temp="";
if(sw1 == 1) temp += "1";
else temp += "0";
if(sw2 == 1) temp += "1";
else temp += "0";
int q_x = abs(int(trunc((q1+2)*1000)));
int q_y = abs(int(trunc((q2+2)*1000)));
int q_z = abs(int(trunc((q3+2)*1000)));
int q_w = abs(int(trunc((q0+2)*1000)));
String s_x = String(q_x);
String s_y = String(q_y);
String s_z = String(q_z);
String s_w = String(q_w);
// while (s_x.length() < 4) {s_x = '0' + s_x;}
// while (s_y.length() < 4) {s_x = '0' + s_y;}
// while (s_z.length() < 4) {s_x = '0' + s_z;}
// while (s_w.length() < 4) {s_x = '0' + s_w;}
// temp += roll;
// temp += pitch;
// temp += yaw;
// temp += ",";
temp += s_x;
temp += s_y;
temp += s_z;
temp += s_w;
// temp += ",";
// temp += String(gxrs, 2);
// temp += ",";
// temp += String(gyrs, 2);
// temp += ",";
// temp += String(gzrs, 2);
// temp += ",";
// temp += String(axg, 2);
// temp += ",";
// temp += String(ayg, 2);
// temp += ",";
// temp += String(azg, 2);
// temp += ",";
// temp += String(x,0);
// temp += ",";
// temp += String(y,0);
// temp += ",";
// temp += String(z,0);
temp += ",";
temp += String(Vbattf, 2);
Serial.println(temp);
byte realByte[temp.length()];
temp.getBytes(realByte, temp.length());
Serial.print("Byte Size: ");
Serial.println(sizeof(realByte));
temp.toCharArray(buf, buff_size);
for(int ii=0;ii<buff_size;ii++)
{
values[ii] = buf[ii];
}
/*
byte* q0b = (byte*) &q0;
byte* q1b = (byte*) &q1;
byte* q2b = (byte*) &q2;
byte* q3b = (byte*) &q3;
byte* qArray[] = {q0b, q1b, q2b, q3b};
*/
if (deviceConnected) {
pCharacteristic->setValue(values, buff_size);
pCharacteristic->notify();
delay(10); // bluetooth stack will go into congestion, if too many packets are sent, in 6 hours test i was able to go as low as 3ms
}
// disconnecting
if (!deviceConnected && oldDeviceConnected) {
delay(500); // give the bluetooth stack the chance to get things ready
pServer->startAdvertising(); // restart advertising
Serial.println("start advertising");
oldDeviceConnected = deviceConnected;
}
// connecting
if (deviceConnected && !oldDeviceConnected) {
// do stuff here on connecting
oldDeviceConnected = deviceConnected;
}
// Sampling Timer
//while(micros() - sampling_timer < 3950); //
//sampling_timer = micros(); //Reset the sampling timer
display.display();
}
void setByteArray(uint8_t uintArray[], uint8_t index, byte* qb){
for(uint8_t i=0; i<4; i++){
uintArray[index+i] = qb[i];
}
}
void MPU6050_Init(){
// MPU6050 Initializing & Reset
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x00); // set to zero (wakes up the MPU-6050)
// MPU6050 Clock Type
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x01); // Selection Clock 'PLL with X axis gyroscope reference'
// MPU6050 Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) for DMP
//writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SMPLRT_DIV, 0x00); // Default is 1KHz // example 0x04 is 200Hz
// MPU6050 Gyroscope Configuration Setting
/* Wire.write(0x00); // FS_SEL=0, Full Scale Range = +/- 250 [degree/sec]
Wire.write(0x08); // FS_SEL=1, Full Scale Range = +/- 500 [degree/sec]
Wire.write(0x10); // FS_SEL=2, Full Scale Range = +/- 1000 [degree/sec]
Wire.write(0x18); // FS_SEL=3, Full Scale Range = +/- 2000 [degree/sec] */
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_CONFIG, 0x18); // FS_SEL=3
// MPU6050 Accelerometer Configuration Setting
/* Wire.write(0x00); // AFS_SEL=0, Full Scale Range = +/- 2 [g]
Wire.write(0x08); // AFS_SEL=1, Full Scale Range = +/- 4 [g]
Wire.write(0x10); // AFS_SEL=2, Full Scale Range = +/- 8 [g]
Wire.write(0x18); // AFS_SEL=3, Full Scale Range = +/- 10 [g] */
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_CONFIG, 0x10); // AFS_SEL=2
// MPU6050 DLPF(Digital Low Pass Filter)
/*Wire.write(0x00); // Accel BW 260Hz, Delay 0ms / Gyro BW 256Hz, Delay 0.98ms, Fs 8KHz
Wire.write(0x01); // Accel BW 184Hz, Delay 2ms / Gyro BW 188Hz, Delay 1.9ms, Fs 1KHz
Wire.write(0x02); // Accel BW 94Hz, Delay 3ms / Gyro BW 98Hz, Delay 2.8ms, Fs 1KHz
Wire.write(0x03); // Accel BW 44Hz, Delay 4.9ms / Gyro BW 42Hz, Delay 4.8ms, Fs 1KHz
Wire.write(0x04); // Accel BW 21Hz, Delay 8.5ms / Gyro BW 20Hz, Delay 8.3ms, Fs 1KHz
Wire.write(0x05); // Accel BW 10Hz, Delay 13.8ms / Gyro BW 10Hz, Delay 13.4ms, Fs 1KHz
Wire.write(0x06); // Accel BW 5Hz, Delay 19ms / Gyro BW 5Hz, Delay 18.6ms, Fs 1KHz */
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_CONFIG, 0x00); //Accel BW 260Hz, Delay 0ms / Gyro BW 256Hz, Delay 0.98ms, Fs 8KHz
}
void mpu6050_GetData() {
uint8_t data_org[14]; // original data of accelerometer and gyro
readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_XOUT_H, 14, &data_org[0]);
AcX = data_org[0] << 8 | data_org[1]; // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L)
AcY = data_org[2] << 8 | data_org[3]; // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
AcZ = data_org[4] << 8 | data_org[5]; // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)
Tmp = data_org[6] << 8 | data_org[7]; // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)
GyX = data_org[8] << 8 | data_org[9]; // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)
GyY = data_org[10] << 8 | data_org[11]; // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)
GyZ = data_org[12] << 8 | data_org[13]; // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)
}
void mpu6050_updateQuaternion() {
axg = (float)(AcX - MPU6050_AXOFFSET) / MPU6050_AXGAIN;
ayg = (float)(AcY - MPU6050_AYOFFSET) / MPU6050_AYGAIN;
azg = (float)(AcZ - MPU6050_AZOFFSET) / MPU6050_AZGAIN;
gxrs = (float)(GyX - MPU6050_GXOFFSET) / MPU6050_GXGAIN * 0.01745329; //degree to radians
gyrs = (float)(GyY - MPU6050_GYOFFSET) / MPU6050_GYGAIN * 0.01745329; //degree to radians
gzrs = (float)(GyZ - MPU6050_GZOFFSET) / MPU6050_GZGAIN * 0.01745329; //degree to radians
// Degree to Radians Pi / 180 = 0.01745329 0.01745329251994329576923690768489
//Serial.println(axg+":"+ayg+":"+azg+":"+gxrs+":"+gyrs+":"+gzrs);
}
void MahonyAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
float norm;
float halfvx, halfvy, halfvz;
float halfex, halfey, halfez;
float qa, qb, qc;
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
norm = sqrt(ax * ax + ay * ay + az * az);
ax /= norm;
ay /= norm;
az /= norm;
// Estimated direction of gravity and vector perpendicular to magnetic flux
halfvx = q1 * q3 - q0 * q2;
halfvy = q0 * q1 + q2 * q3;
halfvz = q0 * q0 - 0.5f + q3 * q3;
// Error is sum of cross product between estimated and measured direction of gravity
halfex = (ay * halfvz - az * halfvy);
halfey = (az * halfvx - ax * halfvz);
halfez = (ax * halfvy - ay * halfvx);
// Compute and apply integral feedback if enabled
if(twoKi > 0.0f) {
integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki
integralFBy += twoKi * halfey * (1.0f / sampleFreq);
integralFBz += twoKi * halfez * (1.0f / sampleFreq);
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;
}
else {
integralFBx = 0.0f; // prevent integral windup
integralFBy = 0.0f;
integralFBz = 0.0f;
}
// Apply proportional feedback
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;
}
// Integrate rate of change of quaternion
gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors
gy *= (0.5f * (1.0f / sampleFreq));
gz *= (0.5f * (1.0f / sampleFreq));
qa = q0;
qb = q1;
qc = q2;
q0 += (-qb * gx - qc * gy - q3 * gz);
q1 += (qa * gx + qc * gz - q3 * gy);
q2 += (qa * gy - qb * gz + q3 * gx);
q3 += (qa * gz + qb * gy - qc * gx);
// Normalise quaternion
norm = sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 /= norm;
q1 /= norm;
q2 /= norm;
q3 /= norm;
}
void mpu6050_getRollPitchYaw() {
// yaw = atan2(2*q1*q2 - 2*q0*q3, 2*q0*q0 + 2*q1*q1 - 1) * 57.29577951;
// pitch = -asin(2*q1*q3 + 2*q0*q2) * 57.29577951;
// roll = atan2(2*q2*q3 - 2*q0*q1, 2*q0*q0 + 2*q3*q3 - 1) * 57.29577951;
// roll = atan2(2*q0*q1 + 2*q2*q3, 1 - 2*q1*q1 - 2*q2*q2) * 57.29577951;
// pitch = asin(2*q0*q2 - 2*q3*q1) * 57.29577951;
// yaw = atan2(2*q0*q3 + 2*q1*q2, 1 - 2*q2*q2 - 2*q3*q3) * 57.29577951;
yaw = -atan2(2.0f * (q1 * q2 + q0 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3) * 57.29577951;
pitch = asin(2.0f * (q1 * q3 - q0 * q2)) * 57.29577951;
roll = atan2(2.0f * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3) * 57.29577951;
}
void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.write(data); // Put data in Tx buffer
Wire.endTransmission(); // Send the Tx buffer
}
// Accelerometer and gyroscope self test; check calibration wrt factory settings
void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
uint8_t rawData[4];
uint8_t selfTest[6];
float factoryTrim[6];
// Configure the accelerometer for self-test
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
delay(250); // Delay a while to let the device execute the self-test
rawData[0] = readByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SELF_TEST_X); // X-axis self-test results
rawData[1] = readByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SELF_TEST_Y); // Y-axis self-test results
rawData[2] = readByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SELF_TEST_Z); // Z-axis self-test results
rawData[3] = readByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SELF_TEST_A); // Mixed-axis self-test results
// Extract the acceleration test results first
selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 2 ; // YA_TEST result is a five-bit unsigned integer
selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) ; // ZA_TEST result is a five-bit unsigned integer
// Extract the gyration test results first
selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
// Process results to allow final comparison with factory set values
factoryTrim[0] = (4096.0*0.34)*(pow( (0.92/0.34) , (((float)selfTest[0] - 1.0)/30.0))); // FT[Xa] factory trim calculation
factoryTrim[1] = (4096.0*0.34)*(pow( (0.92/0.34) , (((float)selfTest[1] - 1.0)/30.0))); // FT[Ya] factory trim calculation
factoryTrim[2] = (4096.0*0.34)*(pow( (0.92/0.34) , (((float)selfTest[2] - 1.0)/30.0))); // FT[Za] factory trim calculation
factoryTrim[3] = ( 25.0*131.0)*(pow( 1.046 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
factoryTrim[4] = (-25.0*131.0)*(pow( 1.046 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
factoryTrim[5] = ( 25.0*131.0)*(pow( 1.046 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
// Output self-test results and factory trim calculation if desired
// Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
// Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
// Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
// Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
// To get to percent, must multiply by 100 and subtract result from 100
for (int i = 0; i < 6; i++) {
destination[i] = 100.0 + 100.0*((float)selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
}
}
// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
void calibrateMPU6050(float * dest1, float * dest2)
{
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
// reset device, reset all registers, clear gyro and accelerometer bias registers
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
delay(100);
// get stable time source
// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x01);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_2, 0x00);
delay(200);
// Configure device for bias calculation
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_INT_ENABLE, 0x00); // Disable all interrupts
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_EN, 0x00); // Disable FIFO
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x00); // Turn on internal clock source
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_I2C_MST_CTRL, 0x00); // Disable I2C master
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_USER_CTRL, 0x00); // Disable FIFO and I2C master modes
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_USER_CTRL, 0x0C); // Reset FIFO and DMP
delay(15);
// Configure MPU6050 gyro and accelerometer for bias calculation
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_CONFIG, 0x01); // Set low-pass filter to 188 Hz
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 16384; // = 16384 LSB/g
// Configure FIFO to capture accelerometer and gyro data for bias calculation
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_USER_CTRL, 0x40); // Enable FIFO
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050)
delay(80); // accumulate 80 samples in 80 milliseconds = 960 bytes
// At end of sample accumulation, turn off FIFO sensor read
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
fifo_count = ((uint16_t)data[0] << 8) | data[1];
packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
for (ii = 0; ii < packet_count; ii++) {
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_R_W, 12, &data[0]); // read data for averaging
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0] += (int32_t) gyro_temp[0];
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) accelsensitivity;}
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1]/4) & 0xFF;
data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2]/4) & 0xFF;
// Push gyro biases to hardware registers
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_XG_OFFS_USRH, data[0]);// might not be supported in MPU6050
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_XG_OFFS_USRL, data[1]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_YG_OFFS_USRH, data[2]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_YG_OFFS_USRL, data[3]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ZG_OFFS_USRH, data[4]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ZG_OFFS_USRL, data[5]);
dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.
int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_XA_OFFS_H, 2, &data[0]); // Read factory accelerometer trim values
accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_YA_OFFS_H, 2, &data[0]);
accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ZA_OFFS_H, 2, &data[0]);
accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
for(ii = 0; ii < 3; ii++) {
if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
}
// Construct total accelerometer bias, including calculated average accelerometer bias from above
accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
accel_bias_reg[1] -= (accel_bias[1]/8);
accel_bias_reg[2] -= (accel_bias[2]/8);
data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
data[1] = (accel_bias_reg[0]) & 0xFF;
data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
data[3] = (accel_bias_reg[1]) & 0xFF;
data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
data[5] = (accel_bias_reg[2]) & 0xFF;
data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
// Push accelerometer biases to hardware registers
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_XA_OFFS_H, data[0]); // might not be supported in MPU6050
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_XA_OFFS_L_TC, data[1]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_YA_OFFS_H, data[2]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_YA_OFFS_L_TC, data[3]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ZA_OFFS_H, data[4]);
writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ZA_OFFS_L_TC, data[5]);
// Output scaled accelerometer biases for manual subtraction in the main program
dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
}
uint8_t readByte(uint8_t address, uint8_t subAddress)
{
uint8_t data; // `data` will store the register data
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
data = Wire.read(); // Fill Rx buffer with result
return data; // Return data read from slave register
}
void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
{
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
Wire.requestFrom(address, count); // Read bytes from slave register address
while (Wire.available()) {
dest[i++] = Wire.read(); } // Put read results in the Rx buffer
}
void ble_init()
{
// Create the BLE Device
// "Motion0001" 을 수정하여 장치의 이름 수정이 가능합니다.
BLEDevice::init("Motion0002");
// Create the BLE Server
pServer = BLEDevice::createServer();
pServer->setCallbacks(new MyServerCallbacks());
// Create the BLE Service
BLEService *pService = pServer->createService(SERVICE_UUID);
// Create a BLE Characteristic
pCharacteristic = pService->createCharacteristic(
CHARACTERISTIC_UUID,
BLECharacteristic::PROPERTY_NOTIFY
);
// https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
// Create a BLE Descriptor
pCharacteristic->addDescriptor(new BLE2902());
// Start the service
pService->start();
// Start advertising
BLEAdvertising *pAdvertising = BLEDevice::getAdvertising();
pAdvertising->addServiceUUID(SERVICE_UUID);
pAdvertising->setScanResponse(false);
pAdvertising->setMinPreferred(0x0); // set value to 0x00 to not advertise this parameter
BLEDevice::startAdvertising();
Serial.println("Waiting a client connection to notify...");
}